PERGAMON

International Journal of Heat and Mass Transfer 45 (2002) 697-700

International Journal of

l'IEAT and MASS
TRANSFER

www.elsevier.com/locate/ijhmt

Technical Note

Radiative heat transfer in absorbing—emitting—scattering gray
medium inside 1-D gray Cartesian enclosure using the
collapsed dimension method

Subhash C. Mishra **, Manohar Prasad °

& Department of Mechanical Engineering, Indian Institute of Technology, Guwahati 781 039, India
® Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208 016, India

Received 28 May 2000

1. Introduction

In the present paper, usage of the collapsed dimension
method (CDM) [1-3] is extended for solving radiative
heat transfer problems in an anisotropically scattering
gray planar medium inside 1-D gray Cartesian enclosure.
In earlier works [1-3], CDM has been shown to work
successfully for radiative transfer problems in 2-D rect-
angular enclosures with absorbing—emitting medium.

In CDM, 3-D radiative information are collapsed to
the 2-D solution plane in terms of effective intensity and
optical thickness coefficient. As all the radiative infor-
mation are collapsed to the 2-D solution plane, the
governing equations in CDM are completely different
from rest of the numerical methods available for solving
radiative heat transfer problems. In this method, as ef-
fective intensities are confined to the 2-D plane, like
other methods, solid angle does not come into the pic-
ture and this greatly reduces both the complexity and the
computational expense involved in the solution of
radiative transfer problems.

2. Formulation

In a participating medium, at any point on the con-
trol surface with optical depth 7, in CDM, radiative heat
flux ¢ due to a semi-circle of effective intensities 7 is given
by
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q(t) = /OT[I(I7 o) sin o dot, (1)

where o is a planar angle, which is defined only in the 2-
D plane and is measured from the control surface. In
CDM, effective intensity is confined to the 2-D plane
and is thus defined as the energy flow rate per unit
projected area in the effective intensity direction a per
unit planar angle da,
30

(o) = ——F. 2

(@) d4 sin o do )
In Eq. (1), effective intensity at any optical depth 7 is
given by

I(t,0) = I(0, ) exp(—1n)
+ / S wexp{ — (c—td(n), ()

where /(0, 1) is the boundary effective intensity at T =0
and 7 is the optical thickness coefficient. For a boundary
wall having temperature 7, and emissivity e, this
boundary effective intensity is given by

T4 1—¢, [T .
10,0) = e, Zw 42— € / () sin o do. (4)
2 2 =0
emitted reflected

In Eq. (3), S is the source function, and it is given by

S(t,a) = (1 — w)y(7) +% /:2 I(z, o )p(e/ — o) do!,

()

where o is the scattering albedo, I, is the blackbody
effective intensity function [4] which is related to
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temperature as f, = ¢7*/2 and p(«/ — a) is the scatter-
ing phase function. For linear anisotropic phase func-
tion, in CDM, it is given by

p(d — o) =1+a;sinasind/, (6)
where in Eq. (6), a; is the anisotropy factor and its value

lies in the range —1<a; <1. By substituting for
p(of — a) from Eq. (6) into Eq. (5), we get

—(1- “ N dof 4+ 4@
S(t,0) = (1 — w)Iy(7) +21t /znl(r,oc)dac + o
X sinoc/ I(z,0)sino’ do/ (7)
2n

which in terms of heat flux ¢ and effective incident ra-
diation G becomes

S(t,0) = (1 — )y (2) + <%>G(r)

+ (% sin oc) q(7)

(8)

where in the above equation, effective incident radiation

G = / I(z,5) da. 9)
2n

It should be noted that in Eq. (8), ¢ is the net heat flux
and is found by extending the integration limit in Eq. (1)
from o« = 0,7 to o = 0, 2.

In CDM, divergence of the radiative heat flux is given
by

V- q = k.n2nly — G]. (10)

In the absence of conduction and convection, in any
control volume, emission and absorption are balanced,
and thus, the system is said to be in radiative equilib-
rium. In this situation, V - ¢ = 0 and, therefore, I, hence
temperature Ty, is related to G as

_o _ 60

It) ===~ (11)

In CDM, in radiative equilibrium situation, Eq. (11) is
used to find the unknown medium temperature. There-
fore, for radiative equilibrium, expression for the source
function (Eq. (8)) simplifies to

S(t,a) = Iy(7) + (% sin Ot)q(‘c). (12)

For finding heat flux and temperature information using
Egs. (1) and (11), in CDM, finite number of effective
intensities are used. For a finite number of effective in-
tensities, Eqs. (1) and (9) are numerically integrated as

g = {/Onl(a)sinozda} - [i;cnl(an)], (13)

G= Uﬁ](@ da} = {il(aH)Aan} (14)

where N is the number of effective rays over a semi-circle

and

A A
¢, = | cos (ozn+ ;") — cos (oc,,— ;")‘ (15)
In Eq. (15), |-| indicates the absolute value, and the

term Ao, is the angle over which the nth effective in-
tensity /(a,) is acting.

To provide effective intensity information in Egs. (13)
and (14), Eq. (3) is used in the following form:

lipr = Irexp(—mn) + S[1 —exp( — )], (16)

where 7, is the downstream effective intensity in o di-
rection at any optical depth 7z and [; is the upstream
effective intensity in the same direction a. The optical
path-leg between the upstream and the downstream
points is 7. Eq. (16) is obtained from Eq. (3) with the
assumption that for the short optical path-leg between
the points i + 1 and i, the source function given by Eq.
(5) remains constant. For the problem in which the
solution is required only in 1-D (for example — planar
geometry), this constant value is equal to the average of
values of the source functions at the upstream and the
downstream points. In any problem, an effective inten-
sity is traced from the boundary. At the boundary, in-
tensity values are calculated from Eq. (4). To arrive at
any downstream point in the medium, Eq. (16) is used
recursively.

3. Validation studies

For validation of the formulation presented above,
radiative heat transfer problem in 1-D Cartesian en-
closure containing absorbing, emitting and scattering
gray medium is considered. The south and the north
boundaries of the enclosure are diffuse gray with
emissivities es and ey, respectively. Temperatures of the
south and the north boundaries are Ts and Ty, re-
spectively. For the validation studies, two types of
problems are considered. In case 1, a boundary emis-
sion problem, which is the representative of radiative
equilibrium, is considered. In this case, net heat flux
remains constant at all optical depths. For different
boundary emissivities and anisotropy, variations of net
heat flux with optical thickness are found, and the
same are compared with the self-generated Monte
Carlo solution. In case 2, medium emission problem,
which is representative of non-radiative equilibrium
situation, is taken up. Here the medium is considered
as isothermal and both the boundaries are considered
at zero temperature. In this case, heat flux at south
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boundaries are found, and compared with the exact
results taken from [4].

3.1. Boundary emission

In this case, south boundary is at some finite tem-
perature 7g and the north boundary temperature 7y is
taken as zero. Medium is absorbing, emitting and an-
isotropically scattering. In Figs. 1(a)—(d), variations of
non-dimensional net heat flux with enclosure optical
thickness in the range [0.0001, 5.0] have been shown. For
results presented in these figures, non-dimensional heat
flux ¥ has been calculated from

Non-dimensional heat flux ¥ = —J%t __
o(T} = T3)

In Fig. 1(a), for e = ex = 1.0, heat flux variations are
given for values of phase function anisotropy a;® in the
range [—1,+1]. Here, for a;o < 0, medium is backward
scattering, whereas for a;ow >0, medium is forward
scattering. For a;w =0, medium is isotropically scat-
tering, if a; =0 and w # 0. It is absorbing—emitting if
o = 0. However, for radiative equilibrium, absorbing—
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emitting situation and absorbing, emitting and isotrop-
ically scattering situation are identical.

In Fig. 1(b), for a;w = 0.0, with south boundary
emissivity es = 0.8, heat flux variations with optical
thickness are given for five different values of the north
boundary emissivity ey = 1.0, 0.8, 0.5, 0.3 and 0.1. In
Figs. 1(b) and (c), with e = 0.8, heat flux variations are
given for ey = 0.5, 0.8, and 1.0. In Fig. 1(c), results are
presented for backward scattering with a;jow = —0.7,
whereas in Fig. 1(d), the same are given for forward
scattering with a;w = +0.7. In Figs. 1(a)-(d), CDM re-
sults with 10 effective intensities are compared with that
of the self-generated Monte Carlo results. For all the
cases, CDM is found to give a very good comparison.

3.2. Isothermal medium emission

In this case, while the geometry is the same as that for
the boundary emission case, the absorbing, emitting,
and anisotropically scattering medium is isothermal at
temperature 7, and both the bounding walls are black
and are at zero temperature. Non-dimensional heat flux
has been calculated from the following:
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Fig. 1. Variation of non-dimensional net heat flux ¥ with enclosure optical thickness; line — CDM results, markers — Monte Carlo

method results [4].
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Fig. 2. Variation of non-dimensional wall heat flux ¥ with enclosure optical thickness; line — CDM results, markers — Monte Carlo

method results [4].

net

Non-dimensional heat flux ¥ = .
oT g‘

In Figs. 2(a) and (b), non-dimensional wall heat flux ¥
results calculated from the CDM using 10 effective in-
tensities, have been compared with the exact results [4].
In both the figures, heat flux variations are for optical
thickness in the range [0.0001,5.0]. In Fig. 2(a), for
a; = 0, results have been presented for @ = 0.0, 0.5, 0.7,
and 0.9. In Fig. 2(b), for w = 0.5, the same are given for
ajo = —0.5, 0, and +0.5. As is obvious from both the
figures, CDM results compare very well with that of the
exact results.

4. Conclusions

In the present work, application of the CDM has
been extended for radiative heat transfer problems in
absorbing, emitting and anisotropically scattering me-
dium. To validate the formulation, in 1-D gray Carte-
sian enclosure, boundary emission and isothermal
medium emission problems have been considered. These
are representatives of radiative and non-radiative equi-
librium cases, respectively. For both types of problems,

over a wide range of enclosure optical thickness, effects
of scattering albedo, phase function anisotropy and
bounding walls emissivities on non-dimensional wall
heat flux have been investigated. For all the test cases,
CDM results have been found to compare exceedingly
well with the results of the benchmark methods.
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